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ABSTRACT

THE NLT fIFRICAL EVALUATION OF THE rLkXlP=-

LIKELIHOOD EST1111ATE OF A SUBSET OF

MIXTURE PROPORTIONS

In this note, we give necessary and sufficient conditions for a maximum-

likelihood estimate of a subset of mixture proportions. From these conditions,

we derive likelihood equations satisfied by the maximum-likelihood estimate

and discuss a successive-approximations procedure suggested by these equations

for numerically ev;.luating the maximum-likelihood estimate. It is shown that,

with'probability 1 for large samples, this procedure converges locally to the

maximum-likelihood estimate whenever a certain step-size lies between 0 and 2.

Furthermore, optimal rates of local convergence are obtained for a step-size

which is bounded below by a number between 1 and 2.



The Numerical Evaluation of the Maximum-Likelihood

Estimate of a Subset of Mixture Proportions

by
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1. Introduction.

Let x be an n-dimensional random variable whose density function is a

convex combination of density functions PO sPl'' " 'pm on 
n . In particular,

suppose that the density function of x is p(x,a ), a member of the para-

metric family of density functions

m
P(x,a) W jiaipi (x) + (1 - 6)Po(x)

for x EUZ n , where a = 019...'(1 
M)  e jR m and B satisfy the following con-

*This author was supported in part by NASA under Contract JSC-NAS-9-12777.
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straints: (1) 0 5 S s 1 and 0 5 ai 5 1 for i s 1 9 .00 0m; (ii) alai = B.

In this note, we assume that S and the density functions p 0 ,...,pm are

known, and we address the problem of numerically estimating 3. the vector

of unknown mixture proportions, on the basis of a given sample {Xk}k=1,...,N

of independent observations on x.

To be more specific, we define a maximum-likelihood estimate of Opt

based on the given sample, to be a choice of a which satisfies the constraints

(i) and (ii) above and which maximizes the log-likelihood function

	

L(a)	 k=1 log P(xk')•

(We assume throughout this report that p(xk ,a) # 0 for k = 1,....N and for

all a satisfying the given constraints.) In the following, we derive necessary

and sufficient conditions for a to be a maximum-likelihood estimate of Oft

and we discuss a particular iterative procedure based on these conditions

for the numerical evaluation of a maximum-likelihood estimate.

The results given here generalize those of [2], in which a restricted

iterative procedure is considered in the special case 6 - 1. We also remark

that our results apply to the problem of numerically evaluating a maximum-

likelihood estimate of a proper subset 
{ai	 .., m

}
i 1	

of mixture proportions

s
in a density Ps i'laipi when the remaining s-m proportions are known.

Indeed, this problem is seen to be of the type considered here by taking

= $ 0	 1	 s o
S 1 - i^m+lai and PO 1-R i^+laipi'
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2. The likelihood equations.

One easily verifies that the log-likelihood function L is a concave

function of a on the constraint set, i.e., the set of elements of a m

satisfying the constraints (i) and (ii) given in the introduction. It

follows that a necessary and sufficient condition for a to be a maximum-

likelihood estimate of a is that VL(a)(a' - a) s 0 for all a' in the

constraint set, where VL(a) _ (2a (a) '" ''
3L (a)). 	 Since this inequality

1	 _	 m

holds if and only if it holds whenever a' is an extreme point of the constraint

set, one concludes that a is a maximum-likelihood estimate if and only if,

3L
for i 1,...,m,	 3L (a) s VL(a)a, with equality if ai > 0. We reformulate

this result as the following necessary and sufficient condition for a to be

a maximum-likelihood estimate of 30 :  For i =

N Pi (xk)	 m N a
1
P
--j 

(X k)
_	 (1)	 ^kEl	 _ s El kEl --—_-- ,

P(xk •a)	 j	 P(xk.a)

with equality if a  > 0.

Multiplying both sides of (1) by ai and rearranging gives the following

necessary condition for a to be a maximum-likelihood estimate:

N aiPi (xk)	 ,m N a P (xk)
(2)	 ai = AiQ 2 a El	 E E - -^-_---

= p(xk,a)	
jal k=1 p(.a)

for i	 1,...,m. This condition is not sufficient in general for a to be a

maximum.-likelihood estimate. Indeed, this condition is satisfied by each extreme

point of the constraint set. However, this condition is sufficient as well as

necessary for a to be a maximum-likelihood estimate which lies in the interior

of the constraint set, i.e., the components of which satisfy a  > 0 for

We refer to the equations (2) as the likelihood equations.
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3. The iterative procedure.

We now define an iterative procedure based on the likelihood equations and

discuss its applicability to the problem of numerically evaluating a maximum-

likelihood estimate of a . Setting A(a) - (A1(a),...,Am(a))T, we write the

likelihood equations as

(3) a - A(a) .

Equivalent to (3) is the equation

(4) a = 0a a) _ (1 - e)a + e A(a)

for any number e. (Of course, (4) becomes (3) when e - 1.) Note that

the continuous nonlinear operator A maps the constraint set into itself. For

any a and any a in the constraint set, the components of e (a) sum to 1;

however, the components of 0 e (a) are guaranteed to be non-negative for all a

in the constraint set only if 0 s e 5 1.

The iterative procedure suggested by (4) is the following: Beginning

with some starting value a(l) in the constraint set, define successive iterates

inductively by

(5) a(j+l) - @e(a(j))

for j - 1,2,... . We observe that if the sequence of iterates defined by (5)

converges, then its limit is a fixed point of 0 e and, hence, of A. Our first

theorem gives sufficient conditions for such a limit to be a maximum-likelihood

estimate. The proof of the theorem is virtually the same as that of the
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corresponding theorem in [2], and we omit it.

THEOREM 1: Suppose that a(1) lies in the interior of the constraint set and

that 0 < e 5 1. If the sequence of iterates defined by (5) converges, then

its limit is a maximum-likelihood estimate of a

In order to give sufficient conditions for the convergence of the iterates

defined by (S), we need to make further assumptions concerning the density

functions po ,...,p,. Henceforth, we assume that they are linearly independent,

m	 m
i.e., that any linear combination 

iE0 cipi' with iEo ci j 0, does not vanish

identically on Ll n. This insures that, with probability 1, there exists a

unique maximum-likelihood estimate for large N which converges to a as N

approaches infinity. (See, for example, Appendix 1 of [3].) Our aim is to

establish the following result.

THEOREM 2: Suppose that Sao lies in the interior of the constraint set and

that 0 < e < 2. Then with probability 1 as N approaches infinity, 4E

Is a local contraction on the constraint set near a, the (unique) maximum-

likelihood estimate of 30.  If the density functions po ,...,pm are analytic

as well as linearly independent, then (P E 'is a local contraction on the con-

straint set near a with probability 1 whenever a lies in the interior of

the constraint set and N a m.

In szying that 0£ is a local contraction on the constraint set near a,

we mean that there exists a norm on ( '' m and a constant X, 0 5 X < 1,

such that

( 6)	 l l ot a ') - a ll 5 X l l a ' - a l l
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for all a' in the constraint set which lie sufficiently near a. Our sufficient

conditions for the convergence of the iterates defined by (5) are stated in

the corollary below, which is an immediate consequence of Theorem 2 and the

inequality (6).

C0^ RY: Suppose that a lies in the interior of the constraint set and

that 0 < e < 2. Then with probability 1 as N approaches infinity, the

iterates defined by (5) converge to a, the (unique) maximum-likelihood

estimate of 30 ,  whenever a (l) lies sufficiently near a. If the density

functions po ,...,pm are analytic as well as linearly independent, then, with

probability 1 whenever a lies in the interior of the constraint set and

N 2 m, the iterates converge to a whenever a (l) lies sufficiently near

a.

Proof of Theorem 2: In proving the first statement of the theorem, it may be

assumed that the (unique) maximum-likelihood estimate a lies in the interior

of the constraint set. (By the remarks preceding the theorem, the probability

is 1 that this occurs for large N.) Assuming 0 < e < 2, we must show that,

with probability 1 as N approaches infinity, an inequality of the form (6)

holds.

For any norm on (R m , one can write

^E (a , ) - a	 (a) (a , - a] + 0(i l a, - a112)•

In this expression, VOE (a) denotes the mxm matrix whose ijth entry is

the ith component of as " (a). It follows that the first statement of the
j

theorem will be proved if it can be shown that, with probability 1 as N
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approaches infinity, there exists a norm II II on R m and a number a,

0 5 X < 1, for which an inequality of the form

(7)
	

I IVOE (a)YI 1 5 a IIYII

holds for all Y in the subspace

M
(Y (Yl,... gym)T JlYi - 0 ) c a m.

Uting the fact that a satisfies the likelihood equations (2), one

verifies that 70 (a)- I - eQ, where

P1(xk) 	 l	 pl(xk)

N	
P(xk 'a)	 p(xk'a)

_	 1	 a	 Po N)

Q	 m N	
(diag ai) E S	 ,	 + (1-0)	 _	 a
a(x ,a)

E E ipi(xk
) 	

k'1	 P k

i=1 k=1 p(xk'a)	
Pm(xk)	 Pm(xk)

_	 1	 _
p(xk•a) 	 kp(xka)J

It is easily shown that 6 is invariant under Q and, hence, under 70E(a).
To establish an inequality of the form (7), it suffices to show that, with

probability 1 as N approaches infinity, there exists a norm on 	 with

respect to which the operator norm of VOC (a) is less than 1.

Define an inner product <•,•> on 9 by <Y,Y'> - yr (diag a-1)y' for

Y and Y' in E. With respect to this inner product, Q is symmetric (in

fact, positive semi-definite) on (5 . It follows that, with respect to the

^ T

t-
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norm on L defined by this inner product, the operator norm of VO 9 (a) on ^' is

less than 1 if the eigenvalues of Q which correspond to eigenvectors in it

lie in the interval (0,11.

Now Q is column stochastic; hence, no eigenvalue of Q on 	 is greater

than 1. (See [1] for a discussion of column stochastic matrices.) To com-

plete the proof of the first statement of the theorem, it need only be shown

that, with probability 1 as N approaches infinity, Q is positive-definite

on	 Now, with probability 1, a converges to a as N approaches

infinity. Using arguments analogous to those employed in [3], one verifies

that, with probability 1, Q converges as N approaches infinity to

'
Pl(x)	 Pl W 

T

P (xX0 )	 1	 P (x,a )
1	 0	 P0(x)	 _o
S(diag cxi){	 S	 + (1-6)	 —	 '	 p(x.a )dx},

n	 P(x,a
0

 )

P.W	 1 Pm(x)

P(x ,a )	 p(x,50)

a positive-definite operator on ^ . It follows that Q is positive-definite

on 6 with probability 1 as N approaches infinity, and the first state-
ment of the theorem is proved.

To prove the second statement of the theorem, suppose that N z m, that

CL lies in the interior of the constraint set, and that p0 ,...,pm are analytic

as well as linearly independent. Repeating the above argument with only minor

changes, one obtains the desired result by finally observing that, as a con-

sequence of the lemma in Appendix 2 of 131, Q is positive-definite on f.

with probability 1 whenever N ? m. This completes the proof of the theorem.



4

i

9

$. The optimal e.

The corollary of Theorem 2 may be summarized by saying that, if a lies

in the interior of the constraint set, then, with probability I for large

samples, the iterates defined by (5) converge locally to the maximum likelihood

estimate a whenever 0 < e < 2. Thus the iterative procedure (5), which is

a generalized steepest-ascent (deflected-gradient) method, has the particularly

Important property of converging locally to a whenever the step-size c lies

in an interval which is completely independent of the particular mixture problem

at hand. Furthermore, if a is no greater than 1, then the successive

Iterates defined by (5) are guaranteed to remain in the constraint set. It

is readily ascertained that these properties are not shared by the usual steepest-

ascent procedure, given by

CL (q+l) = a (q) + {^1 N pi(xk) - i	
E PitXk)

i i	 N k¢1 p(xk,a(q)) mN j=1 k= 1 p(%'Z (q))

for i -

We now observe that there exists a particular value of e, referred to

as "the optimal c," which yields, with probability 1 for large samples,

the fastest uniform rate of local convergence of (5) near a. Indeed, suppose

that a is an interior point of the constraint set and that VO I (a) is

positive-definite on F. (Recall that, with probability 1, these assumptions

are valid for large samples.) Then one sees from the proof of Theorem 2 that

the optimal r Is the unique value of c which minimizes the spectral radius

of vt^E (a)	 i - <Q, r. , garded :v; an operator on ^ . M £ (a) is s)narictric on

t with respect to the inner product <•,•> defined previously. Consequ:ntly,

its operator norm with respect to this inner product is equal to its spectral

^a.



10

radius and, hence, minimal.) It is easily verified that the optimal c is

given by 1 - Et - ep - 1, i.e., e	
p	

where p and Y are, respectively,

the largest and smallest eigenvalues of the operator Q restricted to

It follows from the proof of Theorem 2 that p is never greater than 1.

Thus the optimal a is bounded below by 2, 
where T lies between 0 and

1. In particular, this lower bound on the optimal a lies between 1 and 2.

It should be noted that, if p is strictly less than 1,	 then the optimal e

is act+sally greater than 2, even though Theorem 2 fails to guarantee the

local convergence of (5) for such values of e. We also observe that, despite

the fr ^G: tr.at the column-stochastic matrix Q always has 1 as an eigenvalue,

the eigenvalue p of the restricted operator Q on a can be arbitrarily

small (and, hence, the optimal a can be arbitrarily large). Indeed, Q is

nearly the zero operator on 	 if the component populations in the mixture are

nearly identical.

Suppose that the component populations in the mixture are "widely separated"

in the serse that, for i 	 j,

pi (xk) pJ (xk)

P (xk,a) 2

for k - 1,...,N. Then Q x * and, hence, p and z must lie near 1. One

concludes that, with probability

ra,.e of local convergence of (5)

optimal C. Wc (a) - I - tQ Z 0.

are widely separated, the optimal

rapid first-order local convergen

1 for large samples, the fastest uniform

Is obtained for c near 1, anc for the

Thus for mixtures whose component populations

e is only slightly greater than 1, and

ce of (5) to	 a can be expected for this c.
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Now suppose that two or more of the component populations in the mixture

are nearly identical in the sense that, for some pair of distinct, non-zero

indices i and j, pi(xk) = p(xk) for k = 1,...,N. Then Q is nearly

singular, and hence, T is near zero. Consequently, the optimal a cannot

be much smaller than 2. We remark that, if p is near 1 in this case, then

the optimal e must lie near 2. Then the spectral radius of OOE (a) on

is near 1, even for the optimal c, and it follows that slow first-order

local convergence of (S) to a can be expected in this case.
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